Expression of complementary RNA from chloroplast transgenes affects editing efficiency of transgene and endogenous chloroplast transcripts
نویسندگان
چکیده
The expression of angiosperm chloroplast genes is modified by C-to-U RNA editing. The mechanism for recognition of the approximately 30 C targets of editing is not understood. There is no single consensus sequence surrounding editing sites, though sites can be grouped into small 'clusters' of two to five sites exhibiting some sequence similarity. While complementary RNA that guides nucleotides for alteration has been detected in other RNA modification systems, it is not known whether complementary RNA is involved in chloroplast editing site recognition. We investigated the effect of expressing RNA antisense to the sequences -20 to +6 surrounding the RpoB-2 C target of editing, which is a member of a cluster that includes the PsbL-1 and Rps14-1 sites. Previous experiments had shown that chloroplast rpoB transgene transcripts carrying only these 27 nt were edited in vivo at the proper C. Though transcripts carrying sequences -31 to +60 surrounding the RpoB-2 sites were edited in chloroplast transgenic plants, transcripts carrying the -31 to +62 region followed by the 27 nt complementary region were not edited at all. In contrast, a similar construct, in which the C target as well as the preceding and subsequent nucleotides were mismatched within the 27 nt region, was efficiently edited. The presence of any of the four transgenes carrying RpoB-2 sequences in sense and/or antisense orientation resulted in reduced editing at the PsbL-1 site. Chloroplast transgenic plants expressing the three different antisense RNA constructs exhibited abnormal growth and development, though plants expressing the 92 nt sense transcripts were phenotypically normal.
منابع مشابه
A single alteration 20 nt 5' to an editing target inhibits chloroplast RNA editing in vivo.
Transcripts of typical dicot plant plastid genes undergo C-->U RNA editing at approximately 30 locations, but there is no consensus sequence surrounding the C targets of editing. The cis-acting elements required for editing of the C located at tobacco rpoB editing site II were investigated by introducing translatable chimeric minigenes containing sequence -20 to +6 surrounding the C target of e...
متن کاملSequence elements critical for efficient RNA editing of a tobacco chloroplast transcript in vivo and in vitro
In tobacco chloroplast transcripts 34 nt are efficiently edited to U. No common consensus region is present around all editing sites; however, sites can be grouped in clusters that share short common sequences. Transgene transcripts carrying either the wild-type -31/+22 or -31/+60 sequence near NTrpoB C473, an editing site within tobacco rpoB transcripts, or three different mutated sequences, w...
متن کاملAdvances in chloroplast engineering.
The chloroplast is a pivotal organelle in plant cells and eukaryotic algae to carry out photosynthesis, which provides the primary source of the world's food. The expression of foreign genes in chloroplasts offers several advantages over their expression in the nucleus: high-level expression, transgene stacking in operons and a lack of epigenetic interference allowing stable transgene expressio...
متن کاملCharacteristics and Prediction of RNA Editing Sites in Transcripts of the Moss Takakia lepidozioides Chloroplast
RNA editing in land plant organelles is a process primarily involving the conversion of cytidine to uridine in pre-mRNAs. The process is required for gene expression in plant organelles, because this conversion alters the encoded amino acid residues and improves the sequence identity to homologous proteins. A recent study uncovered that proteins encoded in the nuclear genome are essential for e...
متن کاملChloroSeq, an Optimized Chloroplast RNA-Seq Bioinformatic Pipeline, Reveals Remodeling of the Organellar Transcriptome Under Heat Stress
Although RNA-Seq has revolutionized transcript analysis, organellar transcriptomes are rarely assessed even when present in published datasets. Here, we describe the development and application of a rapid and convenient method, ChloroSeq, to delineate qualitative and quantitative features of chloroplast RNA metabolism from strand-specific RNA-Seq datasets, including processing, editing, splicin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 33 شماره
صفحات -
تاریخ انتشار 2005